Reference: Perlstein DL, et al. (2005) The active form of the Saccharomyces cerevisiae ribonucleotide reductase small subunit is a heterodimer in vitro and in vivo. Biochemistry 44(46):15366-77

Reference Help

Abstract


The class I ribonucleotide reductases (RNRs) are composed of two homodimeric subunits: R1 and R2. R2 houses a diferric-tyrosyl radical (Y*) cofactor. Saccharomyces cerevisiae has two R2s: Y2 (beta2) and Y4 (beta'2). Y4 is an unusual R2 because three residues required for iron binding have been mutated. While the heterodimer (betabeta') is thought to be the active form, several rnr4delta strains are viable. To resolve this paradox, N-terminally epitope-tagged beta and beta' were expressed in E. coli or integrated into the yeast genome. In vitro exchange studies reveal that when apo-(His6)-beta2 ((His)beta2) is mixed with beta'2, apo-(His)betabeta' forms quantitatively within 2 min. In contrast, holo-betabeta' fails to exchange with apo-(His)beta2 to form holo-(His)betabeta and beta'2. Isolation of genomically encoded tagged beta or beta' from yeast extracts gave a 1:1 complex of beta and beta', suggesting that betabeta' is the active form. The catalytic activity, protein concentrations, and Y* content of the rnr4delta and wild type (wt) strains were compared to clarify the role of beta' in vivo. The Y* content of rnr4delta is 15-fold less than that of wt, consistent with the observed low activity of rnr4delta extracts (<0.01 nmol min(-1) mg(-1)) versus wt (0.06 +/- 0.01 nmol min(-1) mg(-1)). (FLAG)beta2 isolated from the rnr4delta strain has a specific activity of 2 nmol min(-1) mg(-1), similar to that of reconstituted apo-(His)beta2 (10 nmol min(-1) mg(-1)), but significantly less than holo-(His)betabeta' (approximately 2000 nmol min(-1) mg(-1)). These studies together demonstrate that beta' plays a crucial role in cluster assembly in vitro and in vivo and that the active form of the yeast R2 is betabeta'.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Perlstein DL, Ge J, Ortigosa AD, Robblee JH, Zhang Z, Huang M, Stubbe J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference