Take our Survey

Reference: Perez-Torrado R, et al. (2005) Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environ Microbiol 71(11):6831-7

Reference Help

Abstract

Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowledge is available about yeast stress responses under the specific media and growth conditions during industrial processes. We performed growth experiments using bench-top fermentors and employed a molecular marker approach (changes in expression levels of five stress-related genes) to investigate how the cells respond to environmental changes during the process of yeast biomass production. The data show that in addition to the general stress response pathway, using the HSP12 gene as a marker, other specific stress response pathways were induced, as indicated by the changes detected in the mRNA levels of two stress-related genes, GPD1 and TRX2. These results suggest that the cells were affected by osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of wine yeast biomass production.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Perez-Torrado R, Bruno-Barcena JM, Matallana E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference