Take our Survey

Reference: Efe JA, et al. (2005) Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J Cell Sci 118(Pt 20):4751-64

Reference Help

Abstract

Although the small Arf-like GTPases Arl1-3 are highly conserved eukaryotic proteins, they remain relatively poorly characterized. The yeast and mammalian Arl1 proteins bind to the Golgi complex, where they recruit specific structural proteins such as Golgins. Yeast Arl1p directly interacts with Mon2p/Ysl2p, a protein that displays some sequence homology to the large Sec7 guanine exchange factors (GEFs) of Arf1. Mon2p also binds the putative aminophospholipid translocase (APT) Neo1p, which performs essential function(s) in membrane trafficking. Our detailed analysis reveals that Mon2p contains six distinct amino acid regions (A to F) that are conserved in several other uncharacterized homologs in higher eukaryotes. As the conserved A, E and F domains are unique to these homologues, they represent the signature of a new protein family. To investigate the role of these domains, we made a series of N- and C-terminal deletions of Mon2p. Although fluorescence and biochemical studies showed that the B and C domains (also present in the large Sec7 GEFs) predominantly mediate interaction with Golgi/endosomal membranes, growth complementation studies revealed that the C-terminal F domain is essential for the activity of Mon2p, indicating that Mon2p might also function independently of Arl1p. We provide evidence that Mon2p is required for efficient recycling from endosomes to the late Golgi. Intriguingly, although transport of CPY to the vacuole was nearly normal in the Deltamon2 strain, we found the constitutive delivery of Aminopeptidase 1 from the cytosol to the vacuole to be almost completely blocked. Finally, we show that Mon2p exhibits genetic and physical interactions with Dop1p, a protein with a putative function in cell polarity. We propose that Mon2p is a scaffold protein with novel conserved domains, and is involved in multiple aspects of endomembrane trafficking.

Reference Type
Journal Article
Authors
Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference