Reference: Smirnova JB, et al. (2005) Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol 25(21):9340-9

Reference Help

Abstract


Global inhibition of protein synthesis is a hallmark of many cellular stress conditions. Even though specific mRNAs defy this (e.g., yeast GCN4 and mammalian ATF4), the extent and variation of such resistance remain uncertain. In this study, we have identified yeast mRNAs that are translationally maintained following either amino acid depletion or fusel alcohol addition. Both stresses inhibit eukaryotic translation initiation factor 2B, but via different mechanisms. Using microarray analysis of polysome and monosome mRNA pools, we demonstrate that these stress conditions elicit widespread yet distinct translational reprogramming, identifying a fundamental role for translational control in the adaptation to environmental stress. These studies also highlight the complex interplay that exists between different stages in the gene expression pathway to allow specific preordained programs of proteome remodeling. For example, many ribosome biogenesis genes are coregulated at the transcriptional and translational levels following amino acid starvation. The transcriptional regulation of these genes has recently been connected to the regulation of cellular proliferation, and on the basis of our results, the translational control of these mRNAs should be factored into this equation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JE, Hubbard SJ, Pavitt GD, Grant CM, Ashe MP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference