Reference: Tanaka T, et al. (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280(51):42078-87

Reference Help

Abstract


We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tanaka T, Izawa S, Inoue Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference