Reference: Wu X and Jiang YW (2005) Genetic/genomic evidence for a key role of polarized endocytosis in filamentous differentiation of S. cerevisiae. Yeast 22(14):1143-53

Reference Help

Abstract


Unicellular S. cerevisiae cells switch from the yeast form to pseudohyphal or filamentous form in response to environmental cues. We report that wild-type BY diploids (in which yeast ORFs have been systematically deleted) undergo normal HU-induced filamentous growth and discernable nitrogen starvation-induced filamentous growth, despite their perceived filamentation-deficient S288C genetic background. This finding allowed us to perform a genome-wide survey for non-essential genes that are required for filamentous growth with the homozygous deletion strains. We report that genes involved in endocytosis are required for both HU-induced and nitrogen starvation-induced filamentous growth. Surprisingly, no known genes involved in exocytosis are required. Despite the fact that polarized growth involves transport of vesicles to the site of growth, we failed to obtain genetic/genomic evidence that exocytosis plays an essential role in filamentous growth. A possible key role of polarized endocytosis (from the growth tip) is consistent with the proposed biological function of filamentous growth as a foraging behaviour. In addition, BUD8 that encodes the distal landmark in yeast-form bipolar budding is required for nitrogen starvation-induced but not HU-induced filamentous growth. Moreover, BUD5, SPA2, PEA2 and BUD6 that regulate bipolar bud site selection do not regulate the unipolar distal budding pattern in HU-induced filamentous growth.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Wu X, Jiang YW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference