Take our Survey

Reference: Akamatsu S, et al. (2000) Effects of aldehyde dehydrogenase and acetyl-CoA synthetase on acetate formation in sake mash. J Biosci Bioeng 90(5):555-60

Reference Help

Abstract


To reveal the mechanism of the production of acetate by sake yeast (Saccharomyces cerevisiae), the expression of genes encoding aldehyde dehydrogenase (ALD), acetyl-CoA synthetase (ACS) and acetyl-CoA hydrolase (ACH), which are related to acetate production, was investigated. Northern blot analysis using total RNA of sake yeast isolated from sake mash revealed that all of the tested genes, ACS1, ACS2, ALD2/3, ALD4, ALD6 and ACH1, were transcribed during sake fermentation. Transcription of ALD2/3 was detected only in the early stage of sake fermentation. A static culture of sake yeast in hyperosmotic media including 1 M sorbitol or 20% glucose resulted in high acetate production and increased transcription of ALD2/3. This is the same result as reported in an aerobic condition, and induction of ALD2/3 seemed to be one reason for high acetate production at high glucose concentration during fermentation. Overexpression of ACS2 resulted in low acetate production both during small-scale sake fermentation and in a static liquid culture. On the other hand, over-expression of ACS1 did not change acetate productivity significantly in a static culture. These results indicate that ALD2/3 and ACS2 play important roles for acetate production during sake fermentation.

Reference Type
Journal Article
Authors
Akamatsu S, Kamiya H, Yamashita N, Motoyoshi T, Goto-Yamamoto N, Ishikawa T, Okazaki N, Nishimura A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference