Take our Survey

Reference: Desilva TM, et al. (2005) Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease. Proteins 61(4):1038-49

Reference Help

Abstract


The coding sequence for the first N-terminal copper binding motif of the human Menkes disease protein (MNK1; residues 2-79) was synthesized, cloned, and expressed in bacteria for biochemical and structural studies. MNK1 adopts the betaalphabetabetaalphabeta fold common to all the metal binding sequences (MBS) found in other metal transport systems (e.g., the yeast copper chaperone for superoxide dismutase CCS, the yeast copper chaperone ATX1 bound to Hg(II), and most recently Cu(I), the bacterial copper binding protein, CopZ, and the bacterial Hg(II) binding protein MerP), although substantial differences were found in the metal binding loop. Similar to ATX1, MNK1 binds Cu(I) in a distorted linear bicoordinate geometry. As with MerP, MNK1 has a high affinity for both Hg(II) and Cu(I), although it displays a marked preference for Cu(I). In addition, we found that F71 is a key residue in the compact folding of MNK1, and its mutation to alanine results in an unfolded structure. The homologous residue in MerP has also been mutated with similar results. Finally, to understand the relationship between protein folding and metal affinity and specificity, we expressed a chimeric MBS with the MNK1 protein carrying the binding motif of MerP (CAAC-MNK1); this chimeric protein showed differences in structure and the dynamics of the binding site that may account for metal specificity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Desilva TM, Veglia G, Opella SJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference