Take our Survey

Reference: Braun E and Brenner N (2004) Transient responses and adaptation to steady state in a eukaryotic gene regulation system. Phys Biol 1(1-2):67-76

Reference Help

Abstract


Understanding the structure and functionality of eukaryotic gene regulation systems is of fundamental importance in many areas of biology. While most recent studies focus on static or short-term properties, measuring the long-term dynamics of these networks under controlled conditions is necessary for their complete characterization. We demonstrate adaptive dynamics in a well-known system of metabolic regulation, the GAL system in the yeast S. cerevisiae. This is a classic model for a eukaryotic genetic switch, induced by galactose and repressed by glucose. We followed the expression of a reporter gfp under a GAL promoter at single-cell resolution in large population of yeast cells. Experiments were conducted for long time scales, several generations, while controlling the environment in continuous culture. This combination enabled us, for the first time, to distinguish between transient responses and steady state. We find that both galactose induction and glucose repression are only transient responses. Over several generations, the system converges to a single robust steady state, independent of external conditions. Thus, at steady state the GAL network loses its hallmark functionality as a sensitive carbon source rheostat. This result suggests that, while short-term dynamics are determined by specific modular responses, over long time scales inter-modular interactions take over and shape a robust steady state response of the regulatory system.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Braun E, Brenner N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference