Take our Survey

Reference: Daniel J (2005) Sir-dependent downregulation of various aging processes. Mol Genet Genomics 274(5):539-47

Reference Help

Abstract


Using a new genetic selection approach in yeast termed fitness-based interferential genetics (FIG), genes that are in an antagonistic relationship with the Sir complexes were selected. Many of the functionally well-defined genes belong to various aging processes occurring in this organism. Three genes are somehow involved in glucose utilization (HXT4,YIL107c, EMI2). Another gene, CDC25, encodes the main regulator of the cyclic AMP pathway in response to glucose. STM1 has been implicated in the control of apoptosis, and indeed, this work shows that disruption of this gene results, among other phenotypes, in resistance to aging. LCB4, encoding a sphingoid bases kinase is linked to the cell integrity pathway. Two other genes, FHL1 and PEP5, are involved in the control of ribosome formation and vacuole biogenesis, respectively; and five genes, presently having unknown functions, could be new potentially interesting candidates for further studies in relation to yeast replicative aging. It is proposed that most, if not all, selected genes are downregulated by the Sir complexes. In addition to changing our view of the mechanisms used by the Sir complexes for extending life span in yeast, these findings could contribute to a better understanding of the role of the Sir complexes in the higher eukaryotes.

Reference Type
Journal Article
Authors
Daniel J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference