Reference: Jayaraman M, et al. (2005) Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress. Biotechnol Prog 21(5):1373-9

Reference Help

Abstract


One of the major stress factors during space and high-altitude flight is the oxidative damage caused by the release of reactive oxygen intermediates (ROIs) in human tissues. ROIs are released in response to several stress factors including radiation in space. Since ROIs contribute to several pathological conditions, there has been a great interest in developing a biosensor that can monitor the impact of ROIs on biological systems. Toward this goal, we sought to engineer a yeast stain that can monitor oxidative stress and be easily integrated into a biosensor platform. Saccharomyces cerevisiae respond to hyperoxidative stress by activating the expression of many proteins including the transcription factor, Yap1. Activated Yap1 primarily binds to the Yap-1 response elements in the promoters of genes that combat oxidative stress. Based on these observations, we genetically altered the Yap-1 pathway in the YCR094W BY4742 strain of S. cerevisiae by fusing the YREs in the promoter region of TRX2 gene to a cDNA-insert encoding green fluorescent protein (GFP). Exposure of this engineered yeast strain BioS-OS1 to varying levels of oxidative stress, as generated by different concentrations of H(2)O(2) or diamide, elicits robust expression of GFP that can be monitored by the fluorescence of GFP by as early as 1 h. BioS-OS1 can detect a H(2)O(2) concentration from 300 muM onward. We also show that the signaling strength of the strain can be increased by engineering multiple YREs in the upstream of the cDNA-insert encoding GFP. Thus, the results presented here demonstrate that the engineered BioS-OS yeast strain can detect ROI-generating oxidative stress and validate the use of this prototypic strain for the development of a biosensor to detect and monitor oxidative stress factors during space and high altitude flights.

Reference Type
Journal Article
Authors
Jayaraman M, Radhika V, Bamne MN, Ramos R, Briggs R, Dhanasekaran DN
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference