Reference: Cowart LA, et al. (2006) Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae. Biochem J 393(Pt 3):733-40

Reference Help

Abstract


Saccharomyces cerevisiae produces the sphingolipid ceramide by de novo synthesis as well as by hydrolysis of complex sphingolipids by Isc1p (inositolphosphoceramide-phospholipase C), which is homologous with the mammalian neutral sphingomyelinases. Though the roles of sphingolipids in yeast stress responses are well characterized, it has been unclear whether Isc1p contributes to stress-induced sphingolipids. The present study was undertaken in order to distinguish the relative roles of de novo sphingolipid biosynthesis versus Isc1p-mediated sphingolipid production in the heat-stress response. Ceramide production was measured at normal and increased temperature in an ISC1 deletion and its parental strain (ISC1 being the gene that codes for Isc1p). The results showed that Isc1p contributes specifically to the formation of the C24-, C24:1- and C26-dihydroceramide species. The interaction between these two pathways of sphingolipid production was confirmed by the finding that ISC1 deletion is synthetically lethal with the lcb1-100 mutation. Interestingly, Isc1p did not contribute significantly to transient cell-cycle arrest or growth at elevated temperature, responses known to be regulated by the de novo pathway. In order to define specific contributions of ISC1, microarray hybridizations were performed, and analyses showed misregulation of genes involved in carbon source utilization and sexual reproduction, which was corroborated by defining a sporulation defect of the isc1Delta strain. These results indicate that the two pathways of ceramide production in yeast interact, but differ in their regulation of ceramides of distinct molecular species and serve distinct cellular functions.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Cowart LA, Okamoto Y, Lu X, Hannun YA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference