Reference: Li W, et al. (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1(3):e36

Reference Help

Abstract


Artemisinins, derived from the wormwood herb Artemisia annua, are the most potent antimalarial drugs currently available. Despite extensive research, the exact mode of action of artemisinins has not been established. Here we use yeast, Saccharamyces cerevisiae, to probe the core working mechanism of this class of antimalarial agents. We demonstrate that artemisinin's inhibitory effect is mediated by disrupting the normal function of mitochondria through depolarizing their membrane potential. Moreover, in a genetic study, we identify the electron transport chain as an important player in artemisinin's action: Deletion of NDE1 or NDI1, which encode mitochondrial NADH dehydrogenases, confers resistance to artemisinin, whereas overexpression of NDE1 or NDI1 dramatically increases sensitivity to artemisinin. Mutations or environmental conditions that affect electron transport also alter host's sensitivity to artemisinin. Sensitivity is partially restored when the Plasmodium falciparum NDI1 ortholog is expressed in yeast ndi1 strain. Finally, we showed that artemisinin's inhibitory effect is mediated by reactive oxygen species. Our results demonstrate that artemisinin's effect is primarily mediated through disruption of membrane potential by its interaction with the electron transport chain, resulting in dysfunctional mitochondria. We propose a dual role of mitochondria played during the action of artemisinin: the electron transport chain stimulates artemisinin's effect, most likely by activating it, and the mitochondria are subsequently damaged by the locally generated free radicals.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference