Take our Survey

Reference: Howell KS, et al. (2005) Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 71(9):5420-6

Reference Help

Abstract

Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Howell KS, Klein M, Swiegers JH, Hayasaka Y, Elsey GM, Fleet GH, Hoj PB, Pretorius IS, de Barros Lopes MA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference