Reference: Holic R, et al. (2004) Regulation of phospholipid biosynthesis by phosphatidylinositol transfer protein Sec14p and its homologues. A critical role for phosphatidic acid. Eur J Biochem 271(22):4401-8

Reference Help

Abstract


Transcription of yeast phospholipid biosynthesis structural genes, which contain an inositol-sensitive upstream activating sequence in their promoters, responds to the availability of the soluble precursors inositol and choline and to changes in phospholipid metabolism. The INO1 gene is deregulated (derepressed when inositol is present) under the conditions of increased phosphatidylcholine (PtdCho) turnover, as occurs in the sec14Delta cki1Delta strain (SEC14 encodes the major yeast phosphatidylinositol transfer protein; CKI1 encodes choline kinase of the cytidine diphosphate choline pathway of PtdCho biosynthesis). Five proteins (Sfhp) share sequence homology with phosphatidylinositol transfer protein Sec14p. Two (Sfh2p and Sfh4p), when overexpressed largely complement the otherwise essential Sec14p requirement concerning growth and secretion. In this study, we analysed the ability of Sec14 homologues to correct the defect in regulation of phospholipid biosynthesis resulting from defective or missing Sec14p. We also analysed how PtdCho turnover relates to the transcriptional regulation of phospholipid biosynthesis. The results show that (a) none of the Sec14 homologues was able to substitute for Sec14p in its regulatory aspects of phospholipid biosynthesis, (b) removal of phospholipase D activity corrected the aberrant INO1 gene regulation in yeast strains with otherwise high PtdCho turnover, and (c) increased steady-state phosphatidic acid levels correlated with derepressed levels of the INO1 gene. Overall, the results support the model in which high phosphatidic acid levels lead to derepression of the genes of phospholipid biosynthesis [Henry, S.A. & Patton-Vogt, J.L. (1998) Prog. Nucleic Acid Res. Mol. Biol.61, 133-179].

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Holic R, Zagorsek M, Griac P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference