Reference: Petti AA and Church GM (2005) A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res 15(9):1298-306

Reference Help

Abstract


Recent computational and experimental work suggests that functional modules underlie much of cellular physiology and are a useful unit of cellular organization from the perspective of systems biology. Because interactions among modules can give rise to higher-level properties that are essential to cellular function, a complete knowledge of these interactions is necessary for future work in systems biology, including in silico modeling and metabolic engineering. Here we present a computational method for the systematic identification and analysis of functional modules whose activity is coordinated at the level of transcription. We applied this method, Search for Pairwise Interactions (SPIN), to obtain a global view of functional module connectivity in Saccharomyces cerevisiae and to provide insight into the biological mechanisms underlying this coordination. We also examined this global network at higher resolution to obtain detailed information about the interactions of particular module pairs. For instance, our results reveal possible transcriptional coordination of glycolysis and lipid metabolism by the transcription factor Gcr1p, and further suggest that glycolysis and phosphoinositide signaling may regulate each other reciprocally.

Reference Type
Authors
Petti AA, Church GM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference