Reference: Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43(4):285-318

Reference Help

Abstract


Much progress has been made in the last decade in identifying genes responsible for antifungal resistance in Candida albicans. Attention has focused on five major C. albicans genes: ABC transporter genes CDR1 and CDR2, major facilitator efflux gene MDR1, and ergosterol biosynthesis genes ERG11 and ERG3. Resistance involves mutations in 14C-lanosterol demethylase, targeted by fluconazole (FLZ) and encoded by ERG11, and mutations that up-regulate efflux genes that probably efflux the antifungals. Mutations that affect ERG3 mutations have been understudied as mechanism resistance among clinical isolates. In vitro resistance in clinical isolates typically involves step-wise mutations affecting more than one of these genes, and often unidentified genes. Different approaches are needed to identify these other genes. Very little is understood about reversible adaptive resistance of C. albicans despite its potential clinical significance; most clinical failures to control infections other than oropharyngeal candidiasis (OPC) occur with in vitro susceptible strains. Tolerance of C. albicans to azoles has been attributed to the calcineurin stress-response pathway, offering new potential targets for next generation antifungals. Recent studies have identified genes that regulate CDR1 or ERG genes. The focus of this review is C. albicans, although information on Saccharomyces cerevisiae or Candida glabrata is provided in areas in where Candida research is underdeveloped. With the completion of the C. albicans genomic sequence, and new methods for high throughput gene overexpression and disruption, rapid progress towards understanding the regulation of resistance, novel resistance mechanisms, and adaptive resistance is expected in the near future.

Reference Type
Journal Article | Review
Authors
Akins RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference