Take our Survey

Reference: Chuang SM and Madura K (2005) Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics 171(4):1477-84

Reference Help

Abstract


Surveillance mechanisms that monitor protein synthesis can promote rapid elimination of misfolded nascent proteins. We showed that the translation elongation factor eEF1A and the proteasome subunit Rpt1 play a central role in the translocation of nascent-damaged proteins to the proteasome. We show here that multiubiquitinated proteins, and the ubiquitin-conjugating (E2) enzyme Ubc4, are rapidly detected in the proteasome following translational damage. However, Ubc4 levels in the proteasome were reduced significantly in a strain that expressed a mutant Rpt1 subunit. Ubc4 and Ubc5 are functionally redundant E2 enzymes that represent ideal candidates for ubiquitinating damaged nascent proteins because they lack significant substrate specificity, are required for the degradation of bulk, damaged proteins, and contribute to cellular stress-tolerance mechanisms. In agreement with this hypothesis, we determined that ubc4Delta ubc5Delta is exceedingly sensitive to protein translation inhibitors. Collectively, these studies suggest a specific role for Ubc4 and Ubc5 in the degradation of cotranslationally damaged proteins that are targeted to the proteasome.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Comparative Study
Authors
Chuang SM, Madura K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference