Take our Survey

Reference: Davies BS, et al. (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol 25(16):7375-85

Reference Help

Abstract

Genes encoding biosynthetic enzymes that make ergosterol, the major fungal membrane sterol, are regulated, in part, at the transcriptional level. Two transcription factors, Upc2p and Ecm22p, bind to the promoters of most ergosterol biosynthetic (ERG) genes, including ERG2 and ERG3, and activate these genes upon sterol depletion. We have identified the transcriptional activation domains of Upc2p and Ecm22p and found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain. The equivalent mutation in ECM22 also greatly enhanced transcriptional activation. The C-terminal regions of Upc2p and Ecm22p, which contained activation domains, also conferred regulation in response to sterol levels. Hence, the activation and regulatory domains of these proteins overlapped. However, the two proteins differed markedly in how they respond to an increased need for sterols. Upon inducing conditions, Upc2p levels increased, and chromatin immunoprecipitation experiments revealed more Upc2p at promoters even when the activation/regulatory domains were tethered to a different DNA-binding domain. However, induction resulted in decreased Ecm22p levels and a corresponding decrease in the amount of Ecm22p bound to promoters. Thus, these two activators differ in their contributions to the regulation of their targets.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Davies BS, Wang HS, Rine J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference