Reference: Dietvorst J, et al. (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22(10):775-88

Reference Help

Abstract


Maltotriose is the second most abundant fermentable sugar in wort and, due to incomplete fermentation, residual maltotriose in beer causes both quality and economic problems in the brewing industry. To identify genes that might improve utilization of maltotriose, we developed a library containing genomic DNA from four lager strains and a laboratory Saccharomyces cerevisiae strain and isolated transformants that could grow on YP/2% maltotriose in the presence of 3 mg/l of the respiratory inhibitor antimycin A. In this way we found a gene which shared 74% similarity with MPH2 and MPH3, 62% similarity with AGT1 and 91% similarity with MAL61 and MAL31, all encoding known maltose transporters. Moreover, the gene shared an even higher similarity (98%) with the uncharacterized Saccharomyces pastorianus mty1 gene (M. Salema-Oom, unpublished; NCBI Accession No. AJ491328). Therefore, we named the gene MTT1 (mty1-like transporter). We showed that the gene was present in four different lager strains but was absent from the laboratory strain CEN.PK113-7D. The ORF in the plasmid isolated from the library lacks 66 base pairs from the 3'-end of MTT1 but instead contains 54 bp of the vector. We named this ORF MTT1alt (NCBI Accession No. DQ010174). (14)C-Maltose and repurified (14)C-maltotriose were used to show that MTT1 and, especially, MTT1alt, encode maltose transporters for which the ratio between activities to maltotriose and maltose is higher than for most known maltose transporters. Introduction of MTT1 or MTT1alt into lager strain A15 raised maltotriose uptake by about 17% or 105%, respectively. Copyright (c) 2005 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Dietvorst J, Londesborough J, Steensma HY
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference