Reference: Rutherford JC and Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3(1):1-13

Reference Help

Abstract


Iron, copper, and zinc are all essential nutrients. The electron transfer properties of iron and copper are fundamental to processes such as respiration and photosynthesis. Zinc forms the catalytic center in numerous enzymes and has an important structural role in a wide range of proteins. However, all these metals can be toxic if their levels and distribution are not carefully regulated, as their inappropriate binding may compromise cellular function. The uncontrolled redox activity of iron and copper can also lead to the generation of damaging oxygen radicals. Therefore, organisms maintain cytoplasmic metal concentrations at a nontoxic level that is sufficient for growth. A variety of homeostatic mechanisms have been identified, which include the control of translation and RNA stability by iron-regulatory proteins and the metal-dependent trafficking or degradation of metal transporters (39, 109, 138). This review focuses on the role that metal-responsive transcription factors have in regulating trace metal metabolism. These factors are able to sense changes in metal concentrations and coordinate the expression of genes that are involved in the acquisition, distribution, sequestration, and use of metals. Consequently, the ability to mediate metal-responsive gene expression is an important aspect of metal homeostasis in those organisms that contain these factors.

Reference Type
Authors
Rutherford JC, Bird AJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference