Reference: Zhang X and Paull TT (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair (Amst) 4(11):1281-94

Reference Help

Abstract


In Saccharomyces cerevisiae, the Mre11/Rad50/Xrs2 (MRX) complex plays important roles in both homologous and non-homologous pathways of DNA repair. In this study, we investigated the role of the MRX complex and its enzymatic functions in non-homologous repair of DNA ends containing incompatible end structures. Using a plasmid transformation assay, we found that mre11 and rad50 null strains are extremely deficient in joining of incompatible DNA ends. Expression of the nuclease-deficient Mre11 mutant H125N fully complemented the mre11 strain for joining of mismatched ends in the absence of homology, while a mutant of Rad50 deficient in ATP-dependent activities exhibited levels of end-joining similar to a rad50 deletion strain. Although the majority of non-homologous end-joining (NHEJ) products isolated did not contain microhomologies, introduction of an 8bp microhomology at mismatched ends resulted in microhomology-mediated joining in all of the products recovered, demonstrating that a microhomology exerts a dominant effect on processing events that occur during NHEJ. Nuclease-deficient Mre11p was less efficient in promoting microhomology-mediated end-joining in comparison to its ability to stimulate non-microhomology-mediated events, suggesting that Mre11p influences, but is not essential for, microhomology-mediated repair. When the linearized DNA was transformed in the presence of an intact homologous plasmid to facilitate gap repair, there was no decrease in NHEJ products obtained, suggesting that NHEJ and homologous repair do not compete for DNA ends in vivo. These results suggest that the MRX complex is essential for joining of incompatible ends by NHEJ, and the ATP-dependent activities of Rad50 are critical for this process.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Zhang X, Paull TT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference