Take our Survey

Reference: Ahn SH, et al. (2005) H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S. cerevisiae. Cell Cycle 4(6):780-3

Reference Help

Abstract


The nucleosome, composed of an octamer of highly conserved histone proteins and associated DNA, is the fundamental unit of eukaryotic chromatin. How arrays of nucleosomes are folded into higher-order structures, and how the dynamics of such compaction are regulated, are questions that remain largely unanswered. Our recent studies demonstrated that phosphorylation of histone H2B is necessary to induce cell death that exhibits phenotypic hallmarks of apoptosis including DNA fragmentation and chromatin condensation in yeast (serine 10)1 and in mammalian cells (serine 14)2 In this article, we extend these findings by uncovering a role for H2B phosphorylation at serine 10 (Ser10) in another biological event that is associated with dramatic alterations in higher-order chromatin structure, meiosis. Our data show strong staining, indicative of H2B (Ser10) phosphorylation, during the pachytene stage of yeast meiotic prophase. These data broaden the use of this phosphorylation mark in chromatin remodeling that closely correlates with chromatin compaction. How phosphorylation marks are translated into meaningful downstream events during processes as diverse as apoptosis and meiosis remain a challenge for future studies.

Reference Type
Journal Article
Authors
Ahn SH, Henderson KA, Keeney S, Allis CD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference