Take our Survey

Reference: Yamanishi Y, et al. (2005) Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics 21 Suppl 1:i468-77

Reference Help

Abstract


MOTIVATION: The metabolic network is an important biological network which relates enzyme proteins and chemical compounds. A large number of metabolic pathways remain unknown nowadays, and many enzymes are missing even in known metabolic pathways. There is, therefore, an incentive to develop methods to reconstruct the unknown parts of the metabolic network and to identify genes coding for missing enzymes. RESULTS: This paper presents new methods to infer enzyme networks from the integration of multiple genomic data and chemical information, in the framework of supervised graph inference. The originality of the methods is the introduction of chemical compatibility as a constraint for refining the network predicted by the network inference engine. The chemical compatibility between two enzymes is obtained automatically from the information encoded by their Enzyme Commission (EC) numbers. The proposed methods are tested and compared on their ability to infer the enzyme network of the yeast Saccharomyces cerevisiae from four datasets for enzymes with assigned EC numbers: gene expression data, protein localization data, phylogenetic profiles and chemical compatibility information. It is shown that the prediction accuracy of the network reconstruction consistently improves owing to the introduction of chemical constraints, the use of a supervised approach and the weighted integration of multiple datasets. Finally, we conduct a comprehensive prediction of a global enzyme network consisting of all enzyme candidate proteins of the yeast to obtain new biological findings. AVAILABILITY: Softwares are available upon request. CONTACT: yoshi@kuicr.kyoto-u.ac.jp.

Reference Type
Journal Article
Authors
Yamanishi Y, Vert JP, Kanehisa M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference