Reference: Priault M, et al. (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12(12):1613-21

Reference Help

Abstract


Autophagy, a highly regulated programme found in almost all eukaryotes, is mainly viewed as a catabolic process that degrades nonessential cellular components into molecular building blocks, subsequently available for biosynthesis at a lesser expense than de novo synthesis. Autophagy is largely known to be regulated by nutritional conditions. Here we show that, in yeast cells grown under nonstarving conditions, autophagy can be induced by mitochondrial dysfunction. Electron micrographs and biochemical studies show that an autophagic activity can result from impairing the mitochondrial electrochemical transmembrane potential. Furthermore, mitochondrial damage-induced autophagy results in the preferential degradation of impaired mitochondria (mitophagy), before leading to cell death. Mitophagy appears to rely on classical macroautophagy machinery while being independent of cellular ATP collapse. These results suggest that in this case, autophagy can be envisioned either as a process of mitochondrial quality control, or as an ultimate cellular response triggered when cells are overwhelmed with damaged mitochondria.Cell Death and Differentiation advance online publication, 10 June 2005; doi:10.1038/sj.cdd.4401697.

Reference Type
Journal Article
Authors
Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference