Reference: Gentry MS, et al. (2005) A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2A heterotrimers. Eukaryot Cell 4(6):1029-40

Reference Help

Abstract


Protein phosphatase 2A (PP2A) catalytic subunit can be covalently modified at its carboxy terminus by phosphorylation or carboxymethylation. Determining the effects of these covalent modifications on the relative amounts and functions of different PP2A heterotrimers is essential to understanding how these modifications regulate PP2A-controlled cellular processes. In this study we have validated and used a novel in vivo assay for assessing PP2A heterotrimer formation in Saccharomyces cerevisiae: the measurement of heterotrimer-dependent localization of green fluorescent protein-PP2A subunits. This assay relies on the fact that the correct cellular localization of PP2A requires that it be fully assembled. Thus, reduced localization would occur as the result of the inability to assemble a stable heterotrimer. Using this assay, we determined the effects of PP2A C-subunit phosphorylation mimic mutations and reduction or loss of PP2A methylation on the formation and localization of PP2A(B/Cdc55p) and PP2A(B'/Rts1p) heterotrimers. Collectively, our findings demonstrate that phosphorylation and methylation of the PP2A catalytic subunit can influence its function both by regulating the total amount of specific PP2A heterotrimers within a cell and by altering the relative proportions of PP2A(B/Cdc55p) and PP2A(B'/Rts1p) heterotrimers up to 10-fold. Thus, these posttranslational modifications allow flexible, yet highly coordinated, regulation of PP2A-dependent signaling pathways that in turn modulate cell growth and function.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Gentry MS, Li Y, Wei H, Syed FF, Patel SH, Hallberg RL, Pallas DC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference