Take our Survey

Reference: Gao XD, et al. (2005) ERS1 encodes a functional homologue of the human lysosomal cystine transporter. FEBS J 272(10):2497-511

Reference Help

Abstract


Cystinosis is a lysosomal storage disease caused by an accumulation of insoluble cystine in the lumen of the lysosome. CTNS encodes the lysosomal cystine transporter, mutations in which manifest as a range of disorders and are the most common cause of inherited renal Fanconi syndrome. Cystinosin, the CTNS product, is highly conserved among mammals. Here we show that the yeast Ers1 protein and cystinosin are functional orthologues, despite sharing only limited sequence homology. Ers1 is a vacuolar protein whose loss of function results in growth sensitivity to hygromycin B. This phenotype can be complemented by the human CTNS gene but not by mutant ctns alleles that were previously identified in cystinosis patients. A genetic screen for multicopy suppressors of an ers1Delta yeast strain identified a novel gene, MEH1, which is implicated in regulating Ers1 function. Meh1 localizes to the vacuolar membrane and loss of MEH1 results in a defect in vacuolar acidification, suggesting that the vacuolar environment is critical for normal ERS1 function. This genetic system has also led us to identify Gtr1 as an Meh1 interacting protein. Like Meh1 and Ers1, Gtr1 associates with vacuolar membranes in an Meh1-dependent manner. These results demonstrate the utility of yeast as a model system for the study of CTNS and vacuolar function.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Gao XD, Wang J, Keppler-Ross S, Dean N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference