Reference: Fisher N and Meunier B (2005) Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. Pest Manag Sci 61(10):973-8

Reference Help

Abstract


Cytochrome b from yeast (Saccharomyces cerevisiae Meyer ex Hansen) provides a convenient model system for the study of Q(o)-site inhibitor (QoI) resistance mutations from a variety of organisms. QoI resistance mutations from fungal plant pathogens (G143A and F129L), malaria agent Plasmodium sp (Y279C/S), and Pneumocystis carinii (L275F), an opportunistic pathogenic fungus of man, were introduced into yeast cytochrome b and their effect on the binding of a variety of natural (myxothiazol and stigmatellin) and synthetic (atovaquone, azoxystrobin and pyraclostrobin) inhibitors to the bc(1) complex monitored. L275S (from a myxothiazol-resistant yeast) was also re-examined. Stigmatellin binding was relatively unaffected by the introduction of these mutations. Significant increases in resistance were observed for the strobilurin-class inhibitors myxothiazol, azoxystrobin and pyraclostrobin, with the largest increase in resistance conferred by G143A. In contrast, atovaquone binding was most effected by Y279C/S and L275S. Notably, F129L, G143A and L275S had a minor effect on bc(1) activity, and so are unlikely to confer significant fitness penalties in vivo. These data are discussed in the light of the atomic structures for myxothiazol- and azoxystrobin-inhibited bovine bc(1) which have recently become available. We propose that QoI resistance due to G143A arises from steric hindrance between the inhibitor and cytochrome b, whereas the mechanism of resistance for the other mutations is due to an increase in binding energy between the protein and inhibitor molecule. Site-directed mutagenesis was also used to model selected regions of the mammalian Q(o) site in yeast cytochrome b in order to further understand the differential efficacy of these QoI in the mammalian and pathogen bc(1) complexes. Copyright (c) 2005 Society of Chemical Industry.

Reference Type
Journal Article
Authors
Fisher N, Meunier B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference