Reference: Flis K, et al. (2005) The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. Biochem J 390(Pt 3):655-64

Reference Help

Abstract


The mammalian chloride channel ClC-2 is a member of the CLC voltage-gated chloride channels family. This broadly expressed protein shows diverse cellular locations and despite numerous studies, its precise function is poorly understood. Disruption of ClC-2-encoding gene in mouse leads to retinal and testicular degeneration and mutations in CLC2 (gene encoding the ClC-2 channel) are associated with idiopathic generalized epilepsies. ClC-2 may also be responsible for Cl- transport in mouse salivary glands. The only CLC homologue of the yeast Saccharomyces cerevisiae, Gef1p, exhibits CLC activity. We expressed the mammalian ClC-2 protein in S. cerevisiae devoid of Gef1p in an attempt to identify yeast proteins influencing the functioning of ClC-2. The presence of such proteins in yeast could indicate the existence of their homologues in mammalian cells and would greatly aid their identification. Expression of ClC-2 in yeast required optimization of the sequence context of the AUG translation initiation codon. After obtaining an efficient translation, we found that rat ClC-2 cannot directly substitute for yeast Gef1p. Functional substitution for Gef1p was, however, achieved in the presence of an increased level of intact or C-terminally truncated yeast Kha1 protein. Based on the deduced amino acid sequence, the Kha1 protein can be classified as a Na+/H+ transporter since it has a large N-terminal domain similar to the family of NHEs (Na+/H+ exchangers). This suggests that the Kha1p may take part in the regulation of intracellular cation homoeostasis and pH control. We have established that Kha1p is localized in the same cellular compartment as Gef1p and yeast-expressed ClC-2: the Golgi apparatus. We propose that Kha1p may aid ClC-2-dependent suppression of the Deltagef1-associated growth defects by keeping the Golgi apparatus pH in a range suitable for ClC-2 activity. The approach employed in the present study may be of general applicability to the characterization of poorly understood proteins by their functional expression in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Flis K, Hinzpeter A, Edelman A, Kurlandzka A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference