Take our Survey

Reference: Katan-Khaykovich Y and Struhl K (2005) Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J 24(12):2138-49

Reference Help

Abstract

Stable, epigenetic inactivation of gene expression by silencing complexes involves a specialized heterochromatin structure, but the kinetics and pathway by which euchromatin is converted to the stable heterochromatin state are poorly understood. Induction of heterochromatin in Saccharomyces cerevisiae by expression of the silencing protein Sir3 results in rapid loss of histone acetylation, whereas removal of euchromatic histone methylation occurs gradually through several cell generations. Unexpectedly, Sir3 binding and the degree of transcriptional repression gradually increase for 3-5 cell generations, even though the intracellular level of Sir3 remains constant. Strains lacking Sas2 histone acetylase or the histone methylases that modify lysines 4 (Set1) or 79 (Dot1) of H3 display accelerated Sir3 accumulation at HMR or its spreading away from the telomere, suggesting that these histone modifications exert distinct inhibitory effects on heterochromatin formation. These findings suggest an ordered pathway of heterochromatin assembly, consisting of an early phase, driven by active enzymatic removal of histone acetylation and resulting in incomplete transcriptional silencing, followed by a slower maturation phase, in which gradual loss of histone methylation enhances Sir association and silencing. Thus, the transition between euchromatin and heterochromatin is gradual and requires multiple cell division cycles.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Katan-Khaykovich Y, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference