Take our Survey

Reference: Yang PK, et al. (2005) Cotranscriptional recruitment of the pseudouridylsynthetase Cbf5p and of the RNA binding protein Naf1p during H/ACA snoRNP assembly. Mol Cell Biol 25(8):3295-304

Reference Help

Abstract

H/ACA small nucleolar ribonucleoprotein particles (snoRNPs) are essential for the maturation and pseudouridylation of the precursor of rRNAs and other stable RNAs. Although the RNA and protein components of these RNPs have been identified, the mechanisms by which they are assembled in vivo are poorly understood. Here we show that the RNA binding protein Naf1p, which is required for H/ACA snoRNPs stability, associates with RNA polymerase II-associated proteins Spt16p, Tfg1p, and Sub1p and with H/ACA snoRNP proteins. Chromatin immunoprecipitation experiments show that Naf1p and the pseudouridylsynthetase Cbf5p cross-link specifically with the chromatin of H/ACA small nucleolar RNA (snoRNA) genes. Naf1p and Cbf5p cross-link predominantly with the 3' end of these genes, in a pattern similar to that observed for transcription elongation factor Spt16p. Cross-linking of Naf1p to H/ACA snoRNA genes requires active transcription and intact H/ACA snoRNA sequences but does not require the RNA polymerase II CTD kinase Ctk1p. These results suggest that Naf1p and Cbf5p are recruited in a cotranscriptional manner during H/ACA snoRNP assembly, possibly by binding to the nascent H/ACA snoRNA transcript during elongation or termination of transcription of H/ACA snoRNA genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yang PK, Hoareau C, Froment C, Monsarrat B, Henry Y, Chanfreau G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference