Reference: Deng Y, et al. (2005) Computationally analyzing the possible biological function of YJL103C--an ORF potentially involved in the regulation of energy process in yeast. Int J Mol Med 15(1):123-7

Reference Help

Abstract


Although the complete genomes of a number of organisms have been sequenced, the biological functions of many genes are still not known. Because experimentally studying the functions of those genes one by one requires tremendous time, it is vital to use published resources like microarray gene expression data for computational analysis of gene functions. One example is YJL103C, a yeast gene of unknown function in the Saccharomyces Genome Database (SGD). It is possible to quickly infer its biological function by computational analysis. In this study, we present an efficient model to explore the biological function of a novel gene using microarray data. We showed that the expression pattern of YJL103C is most similar to the genes in the energy group and respiratory chain subgroup. We further found that YJL103C contains a HAP2,3,4 box in its promoter region and a cytochrome C heme-binding signature in its protein sequence. Our findings define a potential role for YJL103C in the regulation of energy metabolism, specifically in the process of oxidative phosphorylation. Similar bioinformatics methods can be applied to infer the biological functions of other novel genes in organisms for which microarray data are available. In this work, we selected a single gene of unknown function as a case study. By focusing on the power of computer analysis and bioinformatics on the available microarray data, we have determined the likely biological function of YJL103C. Our study provides a method by which to explore the potential function of other genes currently annotated as having an unknown function in any organism for which global gene expression data are available.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Deng Y, He T, Wu Y, Vanka P, Yang G, Huang Y, Yao H, Brown SJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference