Reference: Carroll CW, et al. (2005) The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr Biol 15(1):11-8

Reference Help

Abstract


BACKGROUND: Accurate chromosome segregation during mitosis requires the coordinated destruction of the mitotic regulators securin and cyclins. The anaphase-promoting complex (APC) is a multisubunit ubiquitin-protein ligase that catalyzes the polyubiquitination of these and other proteins and thereby promotes their destruction. How the APC recognizes its substrates is not well understood. In mitosis, the APC activator Cdc20 binds to the APC and is thought to recruit substrates by interacting with a conserved target protein motif called the destruction box. A related protein, called Cdh1, performs a similar function during G1. Recent evidence, however, suggests that the core APC subunit Doc1 also contributes to substrate recognition. RESULTS: To better understand the mechanism by which Doc1 promotes substrate binding to the APC, we generated a series of point mutations in Doc1 and analyzed their effects on the processivity of substrate ubiquitination. Mutations that reduce Doc1 function fall into two classes that define spatially and functionally distinct regions of the protein. One region, which includes the carboxy terminus, anchors Doc1 to the APC but does not influence substrate recognition. The other region, located on the opposite face of Doc1, is required for Doc1 to enhance substrate binding to the APC. Importantly, stimulation of binding by Doc1 also requires that the substrate contain an intact destruction box. Cells carrying DOC1 mutations that eliminate substrate recognition delay in mitosis with high levels of APC substrates. CONCLUSIONS: Doc1 contributes to recognition of the substrate destruction box by the APC. This function of Doc1 is necessary for efficient substrate proteolysis in vivo.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Carroll CW, Enquist-Newman M, Morgan DO
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference