Reference: Gourlay CW and Ayscough KR (2005) Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118(Pt 10):2119-32

Reference Help

Abstract

The build up of reactive oxygen species (ROS) is known to contribute to a reduction in the lifespan of a cell and to their degeneration in diseases such as Alzheimer's and tissue ischaemia. It is therefore important to elucidate pathways that regulate cellular oxidative stress. We have previously shown that actin dynamics can affect the oxidative-stress burden on a yeast cell and thereby its potential lifespan. To elucidate further the connection between actin dynamics and oxidative stress, we sought to identify regulators of this process. The actin regulatory proteins Sla1p and End3p are important in maintaining a rapid turnover of F-actin in cortical patches. We show that cells expressing a mutated form of Sla1p or lacking End3p display markers of apoptosis such as depolarized mitochondrial membranes and elevated levels of reactive oxygen species. Overexpression of the ubiquitin ligase RSP5 can alleviate the oxidative-stress phenotype observed in cells lacking End3p by targeting Sla1p to the cortex and restoring actin remodelling capability. We also demonstrate that overexpression of PDE2, a negative regulator of the Ras/cAMP pathway rescues actin dynamics, reduces oxidative stress sensitivity and restores viability in deltaend3 cells. Our data suggest, for the first time, that a physiological link exists between actin regulation and cAMP signalling that regulates apoptosis in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gourlay CW, Ayscough KR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference