Take our Survey

Reference: Kim Y, et al. (2005) A versatile and general splitting technology for generating targeted YAC subclones. Appl Microbiol Biotechnol 69(1):65-70

Reference Help

Abstract

Yeast artificial chromosomes (YAC) splitting technology was developed as a means to subclone any desired region of eukaryotic chromosomes from one YAC into new YACs. In the present study, the conventional YAC splitting technology was improved by incorporating PCR-mediated chromosome splitting technique and by adding autonomously replicating sequence (ARS) to the system. To demonstrate the performance of the improved method, a 60-kb region from within a 590-kb YAC (clone CIC9e2 from Arabidopsis thaliana chromosome 5) that could not be subcloned using the original method was split to convert into a replicating YAC. Two template plasmids, pSK-KCA and pSKCLY, were used to generate two splitting fragments by PCR. Two splitting fragments consisted of telomeric (C(4)A(2))(6) repeats, 400-bp target region, CEN4, H4ARS and Km(r) (selective marker for plant transformants), or CgLEU2. These splitting fragments were introduced into Saccharomyces cerevisiae harboring the 100-kb split YAC generated by splitting of the 590-kb YAC and containing the 60-kb region. Among 12 Leu(+) transformants, four exhibited the expected karyotype in which two newly split 40- and 60-kb chromosomes were generated. These results demonstrate that the improved method can convert a targeted region of a eukaryotic chromosome within a YAC into a replicating YAC.

Reference Type
Journal Article
Authors
Kim Y, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, Harashima S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference