Reference: Flom G, et al. (2005) Novel interaction of the Hsp90 chaperone machine with Ssl2, an essential DNA helicase in Saccharomyces cerevisiae. Curr Genet 47(6):368-80

Reference Help

Abstract


Hsp90 is an essential molecular chaperone that is critical for the activity of diverse cellular proteins. Hsp90 functions with a number of co-chaperone proteins, including Sti1/Hop. We conducted a genetic screen in Saccharomyces cerevisiae to isolate mutations that exhibit enhanced growth defects in the absence of STI1. We obtained mutations in genes encoding components of the Hsp90 chaperone machine, HSC82, CPR7 and YDJ1, and two essential genes, SSL2 and UTP21, not previously linked to Hsp90. Ssl2, the yeast homologue of XPB, is an ATP-dependent DNA helicase that is a component of the TFIIH multiprotein complex and has dual functions in transcription and DNA repair. In order to determine whether Ssl2 function is dependent on Hsp90, we further examined the interaction between Ssl2 and Hsp90. Multiple mutant alleles of SSL2 exhibited a pronounced growth defect when co-expressed with a mutant allele of Hsp90. In addition, isolation of Ssl2 protein resulted in the co-purification of Hsp90 and Sti1, suggesting that Ssl2 and Hsp90 are in the same protein complexes in vivo. These results suggest a novel role for Hsp90 in the essential cellular functions of transcription and DNA repair.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Flom G, Weekes J, Johnson JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference