Reference: Covian R and Trumpower BL (2005) Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N. J Biol Chem 280(24):22732-40

Reference Help

Abstract


We have obtained evidence for electron transfer between cytochrome b subunits of the yeast bc(1) complex dimer by analyzing pre-steady state reduction of cytochrome b in the presence of center P inhibitors. The kinetics and extent of cytochrome b reduced by quinol in the presence of variable concentrations of antimycin decreased non-linearly and could only be fitted to a model in which electrons entering through one center N can equilibrate between the two cytochrome b subunits of the bc(1) complex dimer. The b(H) heme absorbance in a bc(1) complex inhibited at center P and preincubated with substoichiometric concentrations of antimycin showed a red shift upon the addition of substrate, which indicates that electrons from the uninhibited center N in one monomer are able to reach the b(H) heme at the antimycin-blocked site in the other. The extent of cytochrome b reduction by variable concentrations of menaquinol could only be fitted to a kinetic model that assumes electron equilibration between center N sites in the dimer. Kinetic simulations showed that non-rate-limiting electron equilibration between the two b(H) hemes in the dimer through the two b(L) hemes is possible upon reduction through one center N despite the thermodynamically unfavorable b(H) to b(L) electron transfer step. We propose that electron transfer between cytochrome b subunits minimizes the formation of semiquinone-ferrocytochrome b(H) complexes at center N and favors ubiquinol oxidation at center P by increasing the amount of oxidized cytochrome b.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Covian R, Trumpower BL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference