Reference: Cashikar AG, et al. (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280(25):23869-75

Reference Help

Abstract


Cellular protein folding is challenged by environmental stress and aging, which lead to aberrant protein conformations and aggregation. One way to antagonize the detrimental consequences of protein misfolding is to reactivate vital proteins from aggregates. In the yeast Saccharomyces cerevisiae, Hsp104 facilitates disaggregation and reactivates aggregated proteins with assistance from Hsp70 (Ssa1) and Hsp40 (Ydj1). The small heat shock proteins, Hsp26 and Hsp42, also function in the recovery of misfolded proteins and prevent aggregation in vitro, but their in vivo roles in protein homeostasis remain elusive. We observed that after a sublethal heat shock, a majority of Hsp26 becomes insoluble. Its return to the soluble state during recovery depends on the presence of Hsp104. Further, cells lacking Hsp26 are impaired in the disaggregation of an easily assayed heat-aggregated reporter protein, luciferase. In vitro, Hsp104, Ssa1, and Ydj1 reactivate luciferase:Hsp26 co-aggregates 20-fold more efficiently than luciferase aggregates alone. Small Hsps also facilitate the Hsp104-mediated solubilization of polyglutamine in yeast. Thus, Hsp26 renders aggregates more accessible to Hsp104/Ssa1/Ydj1. Small Hsps partially suppress toxicity, even in the absence of Hsp104, potentially by sequestering polyglutamine from toxic interactions with other proteins. Hence, Hsp26 plays an important role in pathways that defend cells against environmental stress and the types of protein misfolding seen in neurodegenerative disease.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Cashikar AG, Duennwald ML, Lindquist SL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference