Reference: Bouck DC and Bloom KS (2005) The kinetochore protein Ndc10p is required for spindle stability and cytokinesis in yeast. Proc Natl Acad Sci U S A 102(15):5408-13

Reference Help

Abstract

The budding yeast kinetochore is comprised of >60 proteins and associates with 120 bp of centromeric (CEN) DNA. Kinetochore proteins are highly dynamic and exhibit programmed cell cycle changes in localization. The CEN-specific histone, Cse4p, is one of a few stable kinetochore components and remains associated with CEN DNA throughout mitosis. In contrast, several other kinetochore proteins have been observed along interpolar microtubules and at the midzone during anaphase. The inner kinetochore protein, Ndc10p, is enriched at the spindle midzone in late anaphase. We show that Ndc10p is transported to the plus-ends of interpolar microtubules at the midzone during anaphase, a process that requires survivin (Bir1p), a member of the aurora kinase (Ipl1p) complex, and Cdc14p phosphatase. In addition, Ndc10p is required for essential non-kinetochore processes during mitosis. Cells lacking functional Ndc10p show defects in spindle stability during anaphase and failure to split the septin ring during cytokinesis. This latter phenotype leads to a cell separation defect in ndc10-1 cells. We propose that Ndc10p plays a direct role in maintaining spindle stability during anaphase and coordinates the completion of cell division after chromosome segregation.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Bouck DC, Bloom KS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference