Reference: Muratani M, et al. (2005) The F box protein Dsg1/Mdm30 is a transcriptional coactivator that stimulates Gal4 turnover and cotranscriptional mRNA processing. Cell 120(6):887-99

Reference Help

Abstract


We report here that the prototypical yeast transcription factor Gal4 undergoes two distinct modes of ubiquitin-mediated proteolysis: one that occurs independent of transcription and restricts Gal4 function, and another that is transcription coupled and essential for productive activation of Gal4 target genes. Destruction of transcriptionally active Gal4 depends on an F box protein called Dsg1/Mdm30. In the absence of Dsg1, Gal4 is stable, nonubiquitylated, and unable to productively stimulate transcription. Analysis of the phenotype of dsg1-null yeast reveals a striking disconnect between GAL gene RNA and protein levels; in the absence of Dsg1, Gal4 target genes are transcribed, but the resulting RNAs are not translated. The translational defects of these RNAs are related to defects in phosphorylation of the RNA polymerase II carboxy-terminal domain, which in turn affects recruitment of RNA processing machinery. We propose that Gal4 ubiquitylation and destruction are required for initiation-competent transcription complexes to transition to fully mature elongating complexes capable of appropriate mRNA processing.

Reference Type
Journal Article
Authors
Muratani M, Kung C, Shokat KM, Tansey WP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference