Take our Survey

Reference: Sam M, et al. (2005) A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition. Biochemistry 44(11):4181-7

Reference Help

Abstract


Rnt1p, the only known Saccharomyces cerevisiae RNase III double-stranded RNA endonuclease, plays important roles in the processing of precursors of ribosomal RNAs and small nuclear and nucleolar RNAs and in the surveillance of unspliced pre-mRNAs. Specificity of cleavage by Rnt1p relies on the presence of RNA tetraloop structures with the consensus sequence AGNN at the top of the target dsRNA. The sequences of 79 fungal RNase III substrates were inspected to identify additional conserved sequence elements or antideterminants that may contribute to Rnt1p recognition of the double-stranded RNA. Surprisingly, U-A sequences at the base pair adjacent to the conserved terminal tetraloop (closing base pair) were found to be absent from all but one inspected sequence. Analysis of chemically modified variants of the closing base pair showed that the presence of exocyclic groups in the major groove of purines 3' to the last nucleotide of the tetraloop inhibits Rnt1p cleavage without strongly inhibiting Rnt1p binding. We propose that these groups interfere with the recognition of the RNA substrate by the catalytic domain of Rnt1p. These results identify exocyclic groups of purines in the major groove downstream of the tetraloop as a major antideterminant in S. cerevisiae RNase III activity, and suggest a rationale for their apparent counter selection in RNA processing sites.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Sam M, Henras AK, Chanfreau G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference