Reference: Schmitt S, et al. (2005) Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J Biol Chem 280(15):14499-506

Reference Help

Abstract


Transport of nuclear-encoded proteins into mitochondria is mediated by multi-subunit translocation machineries in the outer and inner membranes of mitochondria. The TOM complex contains receptor and pore components that facilitate the recognition of pre-proteins and their transfer through the outer membrane. In addition, the complex contains a set of small proteins. Tom7 and Tom6 have been found in Neurospora and yeast, Tom5 so far only in the latter organism. In the present study, we identified Neurospora Tom5 and analyzed its function in comparison to yeast Tom5, which has been proposed to play a role as a receptor-like component. Neursopora Tom5 crosses the outer membrane with its C-terminus facing the intermembrane space like the other small Tom components. The temperature-sensitive growth phenotype of the yeast TOM5 deletion was rescued by overexpression of Neurospora Tom5. On the other hand, Neurospora cells deficient in tom5 did not exhibit any defect in growth. The structural stability of TOM complexes from cells devoid of Tom5 was significantly altered in yeast but not in Neurospora. The efficiency of protein import in Neurospora mitochondria was not affected by deletion of tom5 whereas in yeast it was reduced as compared to wild-type. We conclude that the main role of Tom5, rather than being a receptor, is maintaining the structural integrity of the TOM complex.

Reference Type
Journal Article
Authors
Schmitt S, Ahting U, Eichacker L, Granvogl B, Go NE, Nargang FE, Neupert W, Nussberger S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference