Take our Survey

Reference: Macasev D, et al. (2004) Tom22', an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol 21(8):1557-64

Reference Help

Abstract


One of the earliest events in the evolution of mitochondria was the development a means to translocate proteins made in the cytosol into the "protomitochondrion." How this was achieved remains uncertain, and the nature of the earliest version of the protein translocation machinery is not known. Comparative sequence analysis suggests three subunits, Tom40, Tom7, and Tom22 as common elements of the protein translocase in the mitochondrial outer membrane in diverse extant eukaryotes. Tom22, the 22-kDa subunit, plays a critical role in the function of this complex in fungi and animals, and we show that an 8-kDa subunit of the plant translocase is a truncated form of Tom22. It has a single transmembrane segment conforming in sequence to the same region of Tom22 from other eukaryotic lineages and a short carboxy-terminal trans domain located in the mitochondrial intermembrane space. The trans domain from the Arabidopsis thaliana protein functions in yeast lacking their own Tom22 by complementing protein import defects and restoring cell growth. Moreover, we have identified orthologs of Tom22, Tom7, and Tom40 in diverse eukaryotes such as the diatom Phaeodactylum tricornutum, the amoebic slime Dictyostelium discoideum, and the protozoan parasite Plasmodium falciparum. This finding strongly suggests these subunits as the core of the protein translocase in the earliest mitochondria.

Reference Type
Journal Article
Authors
Macasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference