Take our Survey

Reference: Anaul Kabir M, et al. (2005) Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 22(3):219-39

Reference Help

Abstract

Eukaryotic chaperonins, the Cct complexes, are assembled into two rings, each of which is composed of a stoichiometric array of eight different subunits, which are denoted Cct1p-Cct8p. Overexpression of a single CCT gene in Saccharomyces cerevisiae causes an increase of the corresponding Cct subunit, but not of the Cct complex. Nevertheless, overexpression of certain Cct subunits, especially CCT6, suppresses a wide range of abnormal phenotypes, including those caused by the diverse types of conditional mutations tor2-21, lst8-2 and rsp5-9 and those caused by the concomitant overexpression of Sit4p and Sap155p. The examination of 73 altered forms of Cct6p revealed that the cct6-24 mutation, containing GDGTT --> AAAAA replacements of the conserved ATP-binding motif, was unable to suppress any of these traits, although the cct6-24 allele was completely functional for growth. These results provide evidence for functional differences among Cct subunits and for physiological properties of unassembled subunits. We suggest that the suppression is due to the competition of specific Cct subunits for activities that normally modify various cellular components. Furthermore, we also suggest that the Cct subunits can act as suppressors only in certain states, such as when associated with ATP. Copyright (c) 2005 John Wiley & Sons, Ltd.

Reference Type
Journal Article
Authors
Anaul Kabir M, Kaminska J, Segel GB, Bethlendy G, Lin P, Della Seta F, Blegen C, Swiderek KM, Zoladek T, Arndt KT, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference