Reference: Sievernich A, et al. (2004) In vitro bioactivity of 17alpha-estradiol. J Steroid Biochem Mol Biol 92(5):455-63

Reference Help

Abstract


A miniaturised short-term in vitro assay based on the activation of the human estrogen receptor alpha and genetically modified yeast (Saccharomyces cerevisiae) cells was performed to explore the capacity of this system to monitor the bioactivity of estrogenic compounds, particularly 17alpha- and 17beta-estradiol. Together with the human estrogen receptor (hER)-alpha plasmid, the reporter plasmid containing a yeast-optimised version of the green fluorescent protein (yEGFP) linked to three repeats of the cis-acting estrogen hormone-responsive element (ERE) were expressed in a strain being deleted in the pleiotropic drug resistance transporters Pdr5, Snq2 and Yor1, known to facilitate efflux of organic compounds including steroids and chemotherapeutics. Agonists that bind to hER in vitro trigger estrogen receptor-mediated transcriptional activation of the GFP reporter gene monitored by fluorescence emission at 535nm. The sensitivity of the assay was tested with various 17alpha- and 17beta-estradiol concentrations, yielding a detection limit of 5pg/ml (0.018nM) for the agonist 17beta-E2 in solvent and in human charcoal-stripped serum using a S. cerevisiae pdr5, snq2 and yor1 mutant strain. For 17alpha-estradiol only, at approximately 1500pg/ml a similar fluorescence response compared to 100pg/ml 17beta-E2 was observed implicating a much weaker potency of this stereoisomer. The specificity of the system was tested by expression of a truncated hER lacking the ligand-binding domain E and by administration of the androgen, 4-androsten 3,17 dione. Both controls did not yield an increase in fluorescence emission. This fluorescence emission assay enables detection of estrogenic biological activity induced by direct agonists, such as 17beta-E2 at concentrations similar to those found in human sera or by estrogen-like chemicals.

Reference Type
Journal Article
Authors
Sievernich A, Wildt L, Lichtenberg-Frate H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference