Take our Survey

Reference: Yamano K, et al. (2005) The phosphate carrier has an ability to be sorted to either the TIM22 pathway or the TIM23 pathway for its import into yeast mitochondria. J Biol Chem 280(11):10011-7

Reference Help

Abstract

Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria via the TOM40 complex, and follow several distinct sorting pathways to reach their destination submitochondrial compartments. Phosphate carrier (PiC) is an inner membrane protein with 6 transmembrane segments (TM1-TM6) and requires, after translocation across the outer membrane, the Tim9-Tim10 complex and the TIM22 complex to be inserted into the inner membrane. Here we analyzed in vitro import of fusion proteins between various PiC segments and mouse dihydrofolate reductase. The fusion protein without TM1-TM2 was translocated across the outer membrane, but was not inserted into the inner membrane. The fusion proteins without TM1-TM4 were not inserted into the inner membrane, but instead translocated across the inner membrane. Functional defects of Tim50 of the TIM23 complex either by depletion of the protein or addition of anti-Tim50 antibodies blocked translocation of the fusion proteins without TM1-TM4 across the inner membrane, suggesting that lack of TM1-TM4 led to switch of its sorting pathway from the TIM22 pathway to the TIM23 pathway. PiC thus appears to have a latent signal for sorting to the TIM23 pathway, which is exposed by reduced interactions with the Tim9-Tim10 complex and maintenance of the import competence.

Reference Type
Journal Article
Authors
Yamano K, Ishikawa D, Esaki M, Endo T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference