Take our Survey

Reference: Polish JA, et al. (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169(2):583-94

Reference Help

Abstract

Rgt1 is a transcription factor that regulates expression of HXT genes encoding glucose transporters in the yeast Saccharomyces cerevisiae. Rgt1 represses HXT gene expression in the absence of glucose; high levels of glucose cause Rgt1 to activate expression of HXT1. We identified four functional domains of Rgt1. A domain required for transcriptional repression (amino acids 210-250) is required for interaction of Rgt1 with the Ssn6 co-repressor. Another region of Rgt1 (320-380) is required for normal transcriptional activation, and sequences flanking this region (310-320 and 400-410) regulate this function. A central region (520-830) and a short sequence adjacent to the zinc cluster DNA-binding domain (80-90) inhibit transcriptional repression when glucose is present. We found that this middle region of Rgt1 physically interacts with the N-terminal portion of the protein that includes the DNA-binding domain. This interaction is inhibited by the Rgt1 regulator Mth1, which binds to Rgt1. Our results suggest that Mth1 promotes transcriptional repression by Rgt1 by binding to it and preventing the intramolecular interaction, probably by preventing phosphorylation of Rgt1, thereby enabling Rgt1 to bind to DNA. Glucose induces HXTI gene expression by causing Mth1 degradation, allowing Rgt1 phosphorylation and leading to the intramolecular interaction that inhibits DNA-binding of Rgt1.

Reference Type
Journal Article
Authors
Polish JA, Kim JH, Johnston M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference