Reference: O'Neill BM, et al. (2004) Coordinated functions of WSS1, PSY2 and TOF1 in the DNA damage response. Nucleic Acids Res 32(22):6519-30

Reference Help

Abstract


The stabilization and processing of stalled replication forks is required to maintain genome integrity in all organisms. In an effort to identify novel proteins that might be involved in stabilizing stalled replication forks, Saccharomyces cerevisiae mutant wss1Delta was isolated from a high-throughput screening of approximately 5000 deletion strains for genes involved in the response to continuous, low-intensity UV irradiation. Disruption of WSS1 resulted in synergistic increases in UV sensitivity with null mutants of genes involved in recombination (RAD52) and cell cycle control (RAD9 and RAD24). WSS1 was also found to interact genetically with SGS1, TOP3, SRS2 and CTF4, which are involved in recombination, repair of replication forks and the establishment of sister chromatid cohesion. A yeast two-hybrid screen identified a potential physical interaction between Wss1 and both Psy2 and Tof1. Genetic interactions were also detected between PSY2 and TOF1, as well as between each gene and RAD52 and SRS2, and between WSS1 and TOF1. Tof1 is known to be involved in stabilizing stalled replication forks and our data suggest that Wss1 and Psy2 similarly function to stabilize or process stalled or collapsed replication forks.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
O'Neill BM, Hanway D, Winzeler EA, Romesberg FE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference