Reference: Fatal N, et al. (2004) Active and specific recruitment of a soluble cargo protein for endoplasmic reticulum exit in the absence of functional COPII component Sec24p. J Cell Sci 117(Pt 9):1665-73

Reference Help

Abstract


Exit of proteins from the yeast endoplasmic reticulum (ER) is thought to occur in vesicles coated by four proteins, Sec13p, Sec31p, Sec23p and Sec24p, which assemble at ER exit sites to form the COPII coat. Sec13p may serve a structural function, whereas Sec24p has been suggested to operate in selection of cargo proteins into COPII vesicles. We showed recently that the soluble glycoprotein Hsp150 exited the ER in the absence of Sec13p function. Here we show that its ER exit did not require functional Sec24p. Hsp150 was secreted to the medium in a sec24-1 mutant at restrictive temperature 37 degrees C, while cell wall invertase and vacuolar carboxypeptidase Y remained in the ER. The determinant guiding Hsp150 to this transport route was mapped to the C-terminal domain of 114 amino acids by deletion analysis, and by an HRP fusion protein-based EM technology adapted here for yeast. This domain actively mediated ER exit of Sec24p-dependent invertase in the absence of Sec24p function. However, the domain was entirely dispensable for ER exit when Sec24p was functional. The Sec24p homolog Sfb2p was shown not to compensate for nonfunctional Sec24p in ER exit of Hsp150. Our data show that a soluble cargo protein, Hsp150, is selected actively and specifically to budding sites lacking normal Sec24p by a signature residing in its C-terminal domain.

Reference Type
Journal Article
Authors
Fatal N, Karhinen L, Jokitalo E, Makarow M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference