Take our Survey

Reference: Dresios J, et al. (2005) A determination of the identity elements in yeast 18 S ribosomal RNA for the recognition of ribosomal protein YS11: the role of the kink-turn motif in helix 11. J Mol Biol 345(4):681-93

Reference Help

Abstract

A description of the site of interaction of YS11, the yeast homolog of eubacterial S17, with 18 S rRNA was obtained by assessing the binding of the ribosomal protein, in a filter retention assay, to oligoribonucleotides that reproduce regions of 18 S rRNA. YS11 binds predominantly to domain I; the K(d) value is 113nM. The dimensions of the YS11 binding site were refined, guided by chemical protection data and by the atomic structure of the Thermus thermophilus 30 S subunit, which has the S17 recognition site in 16 S rRNA. An oligoribonucleotide that mimics helix 11, a phylogenetically conserved region in domain I, binds YS11 with a K(d) value of 230nM; a second oligoribonucleotide that contains only the kink-turn motif in helix 11 binds YS11 with a K(d) value of 528nM. Thus, helix 11 has most of the nucleotides required for the recognition of YS11. To identify those nucleotides a set of 27 transversion mutations in H11 was constructed and their contribution to the binding of YS11 determined. Mutations of nine nucleotides (U313, C314, A316, G337, C338, G347, U348, U350, and C351) increased the K(d) value for YS11 binding by at least eightfold; G325U and U349A mutations increased the K(d) value fivefold. Eight of the 11 mutations are in the kink-turn in H11, confirming the critical importance of the motif for YS11 recognition. The other three nucleotides are in the lower stem and the terminal loop of H11, which makes a lesser, but still important, contribution to YS11 binding. The identity elements for YS11 recognition are: A316, G325, G337, G347, U348, U349, U350, and C351. The effect of the other nucleotides that decrease binding is probably indirect, presumably they affect the conformation of the binding site but do not have contacts to YS11 amino acid residues. The eight identity element nucleotides are in regions of H11 that deviate from A-form geometry and the contacts are predominantly, if not exclusively, to backbone phosphate and sugar oxygen atoms, indicating that YS11 recognizes the shape of the rRNA binding site rather than reading the sequence of nucleotides.

Reference Type
Journal Article
Authors
Dresios J, Chan YL, Wool IG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference